

Rio de Janeiro, v.6, n.2, p. 279-298, maio a agosto de 2014

ANÁLISE ATUARIAL DA PROVISÃO DE EVENTOS OCORRIDOS E NÃO AVISADOS DA SAÚDE SUPLEMENTAR DE UMA OPERADORA DE PLANOS DE SAÚDE

Felipe Augusto Ameno Veiga^a, Bianca Pereira de Sousa^a, José Fabiano da Serra Costa^{a*}, Mariana Ferreira de Carvalho^a

^aUniversidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro – RJ, Brasil

Resumo

A Agência Nacional de Saúde Suplementar – ANS foi criada com o objetivo de regular esse setor da economia que até então não possuía padrão de funcionamento. Sua principal atribuição é monitorar a saúde econômico-financeira das operadoras de planos e seguros de saúde, verificando se os serviços de saúde contratados por seus beneficiários estão sendo prestados. Caso a operadora não venha arcar com os compromissos assumidos, é dito que ela está insolvente. A solvência está ligada diretamente à constituição de provisões técnicas e seu registro em passivos contábeis. Este trabalho se propôs a fazer uma análise comparativa da Provisão de Eventos Ocorridos e Não Avisados (PEONA), com base numa amostra de custo de uma grande operadora de planos privados de saúde. A PEONA foi calculada através da metodologia estabelecida pela ANS e também por outras cinco metodologias: método Chain Ladder, método de Bornhuetter-Ferguson, método de Benktander-Hovinen, método da Log-Normal e método de Bootstrap. Os resultados foram comparados e discutidos e, o método Chain Ladder apresentou melhor resultado e a metodologia da ANS apresentou o pior resultado.

Palavras-Chave: Provisões de Eventos Ocorridos e Não Avisados. Agência Nacional de Saúde Suplementar. Solvência. Ciências Atuariais.

Abstract

The Brazilian National Health Agency (Agência Nacional de Saúde – ANS) was established in order to regulate the health sector of the economy that until then lacked governmental control. The Agency's main attribution is to monitor the economic and financial conditions of carriers (health operators and insured health plans), making sure that the services contracted by beneficiaries are being accordingly provided. If the carrier doesn't fulfill its commitments, it is considered to be insolvent. Solvency is linked directly to constitution of technical provisions and their register in liabilities. This work presents a comparative analysis of the provision for events Incurred but Not Reported (IBNR), based on a sample of costs of a major company of private health plans. The provision for events IBNR is calculated using the methodology established by ANS and also by five other methods: Chain Ladder, Bornhuetter-Ferguson, Benktander-Hovinen, Log-Normal e Bootstrap. The results were compared and discussed, and the Chain Ladder presented the best outcome while the ANS method provided the worst result.

Keywords: Provision for events incurred but not reported. National Regulatory Agency for Private Health Insurance and Plans. Solvency. Actuarial Science.

*Autor para correspondência: e-mail: fabiano@ime.uerj.br

1. Introdução

No início dos anos de 1960, o setor hospitalar brasileiro era custeado pela iniciativa pública. A maioria dos hospitais pertencia aos governos federal, estadual e municipal. Nos locais onde não existiam unidades próprias, eram contratados leitos hospitalares privados para o atendimento dos pacientes vinculados ao sistema de saúde público. Com o passar dos anos, o governo foi diminuindo seus investimentos em saúde, beneficiando assim, o interesse de entidades privadas em financiar esse setor. Com isso foram criadas empresas de medicina de grupo e cooperativas médicas que, junto das empresas de seguro saúde, passaram a oferecer cobertura para o sistema privado. Desde então, o perfil hospitalar brasileiro também passou a ser custeado pela iniciativa privada contribuindo para que o Brasil seja o segundo maior sistema privado de saúde do mundo.

Com o crescimento do mercado de planos de saúde, em três de julho de 1998, foi sancionada a Lei 9.656. O texto legal passou a definir as regras para o funcionamento do setor estabelecendo critérios para entrada, funcionamento e saída de operação de empresas e indicou algumas garantias aos usuários dos planos de saúde, tais como: vetar a rescisão unilateral de contrato, submeter à aprovação do governo os índices de reajustes anuais e discriminar os padrões de cobertura e de qualidade da assistência.

No início de 2000, a Agência Nacional de Saúde Suplementar (ANS) foi criada através Lei 9.961 com o objetivo de regular esse setor. Suas principais atribuições legais são: criar normas, controlar e fiscalizar o segmento privado da saúde, agir em prol do saneamento econômico e financeiro das operadoras e garantir que os direitos dos consumidores que contrataram a prestação de serviços médicos e hospitalares sejam atendidos.

De acordo com Caderno de Informação da Saúde Suplementar, 25% da população, ou seja, mais de 48 milhões de cidadãos possuem um plano de assistência médica. Esse valor representa um aumento de 157% se comparado com a quantidade de beneficiários em dezembro de 2000. No último ano, o mercado de saúde suplementar movimentou um montante de aproximadamente 82 bilhões de reais referentes às receitas. As despesas assistenciais somaram 68 bilhões reais, acarretando em uma sinistralidade (custo/receita) de 82,4% e uma receita média mensal de 141,16 reais (ANS, 2013).

Em 2013, a ANS completa treze anos de regulação do mercado de saúde suplementar. Durante esse tempo foram criadas diversas resoluções e uma série de normas relacionadas ao

aspecto econômico-financeiro das operadoras de saúde, principalmente no que se refere a solvência. Estar solvente é ter mais ativos que obrigações (MELO & NEVES, 2012). Uma das formas para a preservação da solvência de uma operadora é a constituição de provisões técnicas. Elas têm como principal objetivo criar montantes que refletem os riscos inerentes às operações de assistência à saúde com o objetivo de garantir as obrigações futuras. Entre as provisões que as operadoras deverão constituir mensalmente, atendendo às boas práticas contábeis e atuariais está a Provisão de Eventos Ocorridos e Não Avisados (PEONA).

Este trabalho realiza uma análise comparativa da PEONA com base numa amostra de custo de uma grande operadora de planos privados de saúde. A PEONA foi calculada através da metodologia estabelecida pela ANS e também por outras cinco metodologias clássicas comumente utilizadas (GOOVAERTS *et al.*, 1990; CHRISTOFIDES, 1990; PINHEIRO, 1999; ENGLAND & VERRALL, 2002; MELO, 2007; ATHERINO, 2008; WÜTHRICH & MERZ, 2008; CARVALHO, 2010; CORAZZA & PIZZI, 2011) para esse cálculo: método Chain Ladder, método de Bornhuetter-Ferguson, método de Benktander-Hovinen, método de Bootstrap e método da Log-Normal. Os resultados são discutidos e comparados.

2. Provisões Técnicas

O risco no mercado de saúde suplementar pode ser caracterizado pela cobertura dos custos com a assistência médico-hospitalar. As provisões técnicas são montantes formados, obrigatoriamente, pelas empresas e organizações cujo produto é o risco. O principal objetivo de se constituir uma provisão técnica é garantir o pleno funcionamento das operações de uma empresa para que ela tenha condições de arcar com todos os seus compromissos financeiros futuros, independente da apuração de lucro ou prejuízo no período.

A ANS, através da Resolução Normativa (RN) 209 dispõe, entre outros assuntos, sobre a constituição de Provisões Técnicas a serem observadas pelas operadoras de planos privados de assistência à saúde. No art. 9º são enumeradas as provisões que as operadoras deverão constituir mensalmente:

- Provisão de Eventos/Sinistros a Liquidar, com o objetivo de garantir os sinistros já ocorridos, registrados contabilmente e ainda não pagos;
- II. Provisão para Eventos/Sinistros Ocorridos e Não Avisados PEONA, estimada atuarialmente para fazer frente ao pagamento dos sinistros que já tenham ocorrido e que ainda não foram registrados contabilmente;

- III. Provisão para Remissão, para garantir as obrigações decorrentes das cláusulas contratuais de remissão, quando existentes, sendo sua constituição obrigatória a partir da data da efetiva autorização;
- IV. Outras Provisões Técnicas que a operadora julgue necessária visando à manutenção do equilíbrio econômico-financeiro; e
- V. Provisão para Prêmios ou Contribuições não Ganhas PPCNG ou de Risco, devendo ser constituída para a cobertura dos riscos vigentes que ainda poderão ocorrer (ANS, 2013).

No caso de metodologia própria, todas as provisões anteriormente citadas deverão ser aprovadas, através de Nota Técnica Atuarial de Provisões (NTAP) pela Diretoria de Normas e Habilitação das Operadoras (DIOPE). Sua constituição passa a ser obrigatória a partir da data da efetiva autorização.

Como mostrado, a PEONA é estimada atuarialmente para fazer frente ao pagamento dos eventos que já tenham ocorrido e que não tenham sido registrados pela operadora. O evento passa a ser caracterizado a partir do momento que é registrado contabilmente.

Caso esteja superdimensionada, a PEONA compromete a distribuição de lucros da empresa e gera um custo indireto chamado custo de capital. Esse montante que fica parado na empresa é investido em ativos cuja remuneração é inferior à taxa de retorno esperada considerando o risco envolvido na operação. Uma vez subdimensionada, ela pode conduzir à insolvência da operadora. Isso afeta diretamente os clientes, empregados, fornecedores e indiretamente as concorrentes, pois abala a credibilidade do mercado onde o produto é o risco.

3. Amostra

A partir de uma amostra de clientes de uma grande operadora de sáude, foram estudados os sinistros ocorridos no período compreendido entre janeiro de 2010 e dezembro de 2011. Todas as estimativas foram realizadas com base em janeiro de 2010 e dezembro de 2010. O período de aviso seguinte (janeiro de 2011 a dezembro de 2011) foi utilizado como base para o comparativo.

O período utilizado no modelo apresentado nesse trabalho para o cálculo da PEONA pode ser considerado adequado. Períodos similares foram utilizados, indicados ou mencionados nos trabalhos de Pinheiro (1999), Lima & Carvalho (2010), Melo (2007), Simões (2008), Chadick *et al.* (2009), Mano & Ferreira (2009) e Pereira (2013).

Os dados são confidenciais e todos os valores aqui apresentados foram multiplicados por uma constante, logo não correspondem a montantes reais. O quadro 1 mostra as variáveis extraídas do banco de dados e sua respectiva descrição:

Quadro 1: Variáveis da base de dados (Fonte: Autores - 2013)

Nome da Variável	Tipo	Descrição
Data de Competência da Ocorrência	Data	Data da utilização médica do cliente no prestador
Data de Competência do Aviso	Data	Data do aviso do sinistro
Valor dos Sinistros Avisados	Numérico	Custo referente à utilização médica dos clientes

Os dados devem ser apresentados de forma que seja observado o desenvolvimento dos sinistros. A melhor forma é através de uma matriz triangular que recebe o nome de triângulo de desenvolvimento ou triângulo de *run-off* (DE JONG, 2006; ATHERINO, 2008).

Define-se a data inicial como janeiro de 2010 e será observado o comportamento dos dados pelos 11 meses seguintes. O mês de ocorrência de um determinado sinistro será denotado por i, se ele ocorreu i meses após a data inicial, e o mês de aviso será chamado de j, se ele foi avisado j meses após a data de ocorrência.

Considerando $X_{i,j}$ a soma dos valores dos sinistros com mês de ocorrência i e mês de aviso j, esses valores só são conhecidos para $1 \le i \le m$ e $1 \le j \le m$ -i+1. O triângulo de desenvolvimento é uma matriz $m \times m$, tal que a posição (i,j), para $1 \le i \le m$ e $1 \le j \le m$ -i+1, recebe o valor de $X_{i,j}$ e as demais entradas são desconhecidas. Em alguns modelos, é comum encontrar o termo triângulo acumulado, que trata da matriz das entradas como (1):

$$A_{i,j} = \sum_{k=1}^{j} X_{i,k}$$
 (1)

Cada posição do triângulo acumulado representa o total de sinistros ocorridos em i e avisados em até j meses. As tabelas 1 e 2 representam respectivamente o triâgulo de desenvolvimento incremental e o triângulo de desenvolvimento acumulado.

Tabela 1: Triângulo de desenvolvimento incremental (Fonte: Autores – 2013)

	0	1	2	3	4	5	6	7	8	9	10	11
jan/10	4.379.979	5.391.777	2.065.994	698.975	408.374	571.951	394.109	225.405	60.682	169.377	54.887	63.043
fev/10	3.674.365	5.208.349	2.119.773	1.117.402	517.857	396.881	370.067	119.208	274.077	45.878	30.034	
mar/10	4.120.183	5.331.236	1.762.769	687.145	771.451	424.009	146.888	213.040	59.917	4.870		
abr/10	3.673.375	5.851.430	1.934.239	2.074.260	985.555	634.602	388.428	278.062	79.097			
mai/10	4.348.593	5.059.641	3.246.156	2.762.365	637.000	273.159	283.399	264.101				
jun/10	4.177.032	6.972.554	3.563.668	2.141.055	973.266	428.951	204.910					
jul/10	4.381.998	7.203.482	5.420.388	4.030.127	1.297.707	290.478						
ago/10	5.621.242	5.429.938	5.850.270	3.852.938	1.401.573							
set/10	6.779.767	6.091.281	4.064.043	3.863.297								
out/10	5.125.747	5.336.403	4.825.145									
nov/10	3.882.433	6.854.221										
dez/10	3.782.505											

Tabela 2: Triângulo de desenvolvimento acumulado (Fonte: Autores – 2013)

	0	1	2	3	4	5	6	7	8	9	10	11
jan/10	4.379.979	9.771.755	11.837.749	12.536.724	12.945.098	13.517.049	13.911.158	14.136.564	14.197.245	14.366.623	14.421.509	14.484.553
fev/10	3.674.365	8.882.714	11.002.487	12.119.889	12.637.746	13.034.627	13.404.694	13.523.902	13.797.979	13.843.857	13.873.891	
mar/10	4.120.183	9.451.419	11.214.187	11.901.333	12.672.783	13.096.793	13.243.681	13.456.721	13.516.638	13.521.508		
abr/10	3.673.375	9.524.806	11.459.045	13.533.305	14.518.860	15.153.461	15.541.889	15.819.952	15.899.048			
mai/10	4.348.593	9.408.234	12.654.390	15.416.755	16.053.756	16.326.914	16.610.313	16.874.414				
jun/10	4.177.032	11.149.586	14.713.253	16.854.309	17.827.575	18.256.526	18.461.436					
jul/10	4.381.998	11.585.480	17.005.868	21.035.995	22.333.703	22.624.181						
ago/10	5.621.242	11.051.180	16.901.449	20.754.387	22.155.960							
set/10	6.779.767	12.871.049	16.935.092	20.798.389								
out/10	5.125.747	10.462.150	15.287.295									
nov/10	3.882.433	10.736.654										
dez/10	3.782.505											·

4. Metodologias

4.1. Metodologia ANS

Segundo a Resolução Normativa 209 (ANS, 2013), nos primeiros 12 (doze) meses de operação ou até que ocorra a aprovação de metodologia específica de cálculo, as operadoras deverão constituir valores mínimos de PEONA, observando o maior entre os seguintes valores:

- I. 9,5% (nove vírgula cinco por cento) do total de contraprestações emitidas líquidas nos últimos 12 (doze) meses, na modalidade de preço preestabelecido, exceto aquelas referentes às contraprestações (preço pré-estabelecido) odontológicas; e
- II. 12% (doze por cento) do total de eventos indenizáveis conhecidos na modalidade de preço preestabelecido, nos últimos 12 (doze) meses, exceto aqueles referentes às despesas odontológicas.

Pela legislação o cálculo é efetuado com base nos valores registrados no balanço da operadora, referentes às contraprestações (preço pré-estabelecido) líquidas e eventos indenizáveis. Como os dados aqui foram modificados para o exemplo, não existe a informação real do balanço. Dessa forma, considerado como o total de contraprestações emitidas nos últimos 12 meses, o valor total de custos avisados em 2010, ou seja, R\$ 188.499.834 e o total de eventos indenizáveis, R\$ 131.949.884.

Realizados os cálculos conforme a RN 209, os resultados são:

I. -9.5% (188.499.834) = 17.907.484

II. -12% (131.949.884) = 15.833.986

Portanto, o valor da PEONA segundo a RN 209 é de R\$ 17.907.484.

4.2. Metodo Chain Ladder

O Chain Ladder (VERRALL, 1989) é um método que parte do pressuposto que as evoluções passadas, observadas no triângulo de desenvolvimento, continuarão a verificar-se no futuro (TAYLOR, 2000). Carvalho (2010) e Alves (2011) utilizam o método de Chain Ladder tanto para o cálculo de provisões de reservas quanto para o cálculo de previsão de sinistro. Trata-se de uma sequência de cálculos realizados a partir do triângulo acumulado, cujas entradas são os únicos dados levados em consideração pelo estimador.

Supondo que todo sinistro demore no máximo m meses para ser avisado, pode-se dizer que a PEONA seja dada em (2) logo é preciso estimar os elementos $A_{i,m}$ para se determinar o valor dessa equação.

$$PEONA = \sum_{i=2}^{m} (A_{i,m} - A_{i,m-i+1})$$
 (2)

A principal ideia desse método é que a razão $A_{i,j+1}/A_{i,j}$ é uma variável aleatória com média f_j , ou seja, o fator de crescimento entre as colunas j e j+1 não depende da linha i. O primeiro passo será, utilizando os valores conhecidos do triângulo, estimar os fatores f_j para $1 \le j \le m-1$. Assim, o estimador de f_j , para $1 \le j \le m-1$, está exposto na equação (3) e a tabela 3 apresenta os fatores do desenvolvimento.

$$f_{j} = \frac{\sum_{i=1}^{m-j} A_{i,j+1}}{\sum_{i=1}^{m-1} A_{i,j}}$$
(3)

Tabela 3: Fatores de desenvolvimento (Fonte: Autores – 2013)

	/
$\mathbf{f_{j}}$	Valor
1	2,290355478
2	1,334610114
3	1,171572582
4	1,056324064
5	1,027709364
6	1,02000106
7	1,015125711
8	1,008320961
9	1,005302723
10	1,003010255
11	1,004371472

A partir desses fatores (tabela 3) a parte de baixo do triângulo é estimada, conforme seguinte equação (4):

$$A_{i,m} = A_{i,m-i+1} \prod_{j=m-i+1}^{m-1} f_j$$
 (4)

Na tabela 4 é apresentado o Triângulo Completo, com as estimativas da parte desconhecida. A soma desses valores é o valor da PEONA de R\$ 33.257.961.

Tabela 4: Triângulo completo Chain Ladder (Fonte: Autores – 2013)

	0	1	2	3	4	5	6	7	8	9	10	11
jan/10	4.379.979	5.391.777	2.065.994	698.975	408.374	571.951	394.109	225.405	60.682	169.377	54.887	63.043
fev/10	3.674.365	5.208.349	2.119.773	1.117.402	517.857	396.881	370.067	119.208	274.077	45.878	30.034	60.649
mar/10	4.120.183	5.331.236	1.762.769	687.145	771.451	424.009	146.888	213.040	59.917	4.870	40.703	59.287
abr/10	3.673.375	5.851.430	1.934.239	2.074.260	985.555	634.602	388.428	278.062	79.097	84.308	48.114	70.081
mai/10	4.348.593	5.059.641	3.246.156	2.762.365	637.000	273.159	283.399	264.101	140.411	90.225	51.491	74.999
jun/10	4.177.032	6.972.554	3.563.668	2.141.055	973.266	428.951	204.910	279.242	155.940	100.204	57.185	83.294
jul/10	4.381.998	7.203.482	5.420.388	4.030.127	1.297.707	290.478	452.508	349.051	194.925	125.254	71.481	104.117
ago/10	5.621.242	5.429.938	5.850.270	3.852.938	1.401.573	613.928	455.422	351.299	196.180	126.061	71.942	104.788
set/10	6.779.767	6.091.281	4.064.043	3.863.297	1.171.450	608.770	451.596	348.348	194.532	125.002	71.337	103.907
out/10	5.125.747	5.336.403	4.825.145	2.622.881	1.008.774	524.232	388.884	299.974	167.518	107.643	61.431	89.478
nov/10	3.882.433	6.854.221	3.592.593	2.458.506	945.554	491.379	364.513	281.175	157.020	100.897	57.581	83.871
dez/10	3.782.505	4.880.776	2.898.822	1.983.740	762.957	396.488	294.121	226.877	126.697	81.413	46.461	67.674

4.3. Metodo Bornhuetter-Ferguson

O método de Bornhuetter-Ferguson (BORNHUETTER & FERGUSON, 1972) utiliza estimativas iniciais de sinistros finais (M_i) para cada data de ocorrência como ponto de partida para o seu cálculo. Schmidt (2006) apresenta com êxito uma aplicação do método para cálculo de reservas em triangulos de *run-off*.

Geralmente são considerados valores complementares, como por exemplo, o prêmio de risco. As estimativas são dadas através da fórmula (5):

$$M_{i} = \frac{X_{i,13-i}}{0.7} \tag{5}$$

Essa relação surge da derivação do conceito de sinistralidade. Da diagonal do triângulo $(X_{i,13-i})$ são retirados os valores dos custos avisados no período atual e levando em consideração a sinistralidade ideal praticada pelo mercado de 70% são achados os valores da receita, que serão utilizados como as estimativas de M_i (Tabela 5).

Tabela 5: Fatores de Mi (Fonte: Autores – 2013)

$M_{\mathbf{i}}$	
5.403.579	
15.338.077,03	
21.838.992,26	
29.711.984,20	
31.651.372,11	
32.320.258,61	
26.373.479,64	
24.106.305,44	
22.712.926,05	
19.316.440,45	
19.819.844,59	
20.692.218,06	

A última coluna do triângulo recebe os valores de Mi. Com os fatores de desenvolvimento calculados previamente pelo método Chain Ladder, a parte de baixo do triângulo acumulado é obtida em (6):

$$A_{i,m} = M_i \left(1 - \frac{1}{f_{n-i+2} f_{n-i+3} \dots f_i} \right)$$
 (6)

A tabela 6 apresenta o triângulo completo com os valores das estimativas da parte desconhecida. Somando esses valores é encontrada uma PEONA de R\$ 38.063.588.

Tabela	Tabela 6: Triangulo completo de Bornnuetter-Ferguson (Fonte: Autores – 2013)											
	0	1	2	3	4	5	6	7	8	9	10	11
jan/10	1.274.355	1.696.216	1.007.427	689.409	265.150	137.791	102.216	78.846	44.031	28.293	16.147	23.519
fev/10	3.691.098	4.814.713	2.859.585	1.956.889	752.630	391.121	290.140	223.806	124.982	80.311	45.833	66.758
mar/10	5.272.553	6.855.389	4.071.596	2.786.300	1.071.626	556.895	413.114	318.664	177.955	114.350	65.258	95.053
abr/10	7.187.792	9.326.768	5.539.413	3.790.766	1.457.949	757.656	562.042	433.543	242.108	155.573	88.784	129.320
mai/10	7.659.559	9.935.554	5.900.987	4.038.201	1.553.113	807.110	598.728	461.842	257.911	165.728	94.579	137.761
jun/10	7.822.248	10.145.521	6.025.692	4.123.540	1.585.935	824.167	611.381	471.602	263.362	169.230	96.578	140.672
jul/10	6.375.540	8.278.792	4.916.993	3.364.827	1.294.131	672.524	498.890	384.829	214.904	138.092	78.808	114.789
ago/10	5.823.972	7.567.112	4.494.307	3.075.573	1.182.882	614.711	456.003	351.748	196.430	126.221	72.033	104.921
set/10	5.484.972	7.129.722	4.234.530	2.897.800	1.114.509	579.180	429.645	331.416	185.076	118.926	67.870	98.857
out/10	4.658.676	6.063.545	3.601.299	2.464.464	947.846	492.569	365.396	281.856	157.400	101.142	57.721	84.074
nov/10	4.781.108	6.221.567	3.695.152	2.528.690	972.548	505.406	374.919	289.202	161.502	103.777	59.225	86.265
dez/10	4.993.302	6.495.410	3.857.795	2.639.991	1.015.355	527.652	391.421	301.931	168.611	108.345	61.832	90.062

Tabela 6: Triângulo completo de Bornhuetter-Ferguson (Fonte: Autores – 2013)

4.4. Método Benktander-Hovinen

O método de Benktander-Hovinen (BENKTANDER, 1976) tem como objetivo permutar os dois métodos apresentados anteriormente. Enquanto o método Chain Ladder ignora as informações a priori sobre os sinistros finais, o método Bornhuetter-Ferguson não leva em consideração as últimas observações da diagonal. A solução encontrada foi realizar uma mistura da credibilidade desses dois métodos aplicada em Wuthrich & Merz (2008) e Gigante *et al.*, (2013). O fator de credibilidade c deve aumentar com o desenvolvimento de $X_{i,j}$, pois é obtida uma melhor informação da parte desconhecida do triângulo com o crescimento dos períodos de desenvolvimento.

Esse fator c é calculado pela seguinte fórmula: $c=1-(1-\beta_{n-1})^2$. Para o cálculo de β_j são utilizados os fatores de desenvolvimento (f_i) , conforme (7):

$$\beta_{\mathbf{j}} = \prod_{\mathbf{k}=\mathbf{j}}^{\mathbf{n}-1} \mathbf{f}_{\mathbf{i}}^{-1} \tag{7}$$

A tabela 7 apresenta os valores de β_i e c, em função dos períodos.

Tabela 7: Fatores de credibilidade de Benktander-Hovinen (Fonte: Autores – 2013)

Períodos	$\beta_{\rm j}$	c
2	0,24327	0,99998
3	0,55718	0,99995
4	0,74361	0,99984
5	0,87120	0,99957
6	0,92027	0,99875
7	0,94577	0,99706
8	0,96468	0,99364
9	0,97927	0,98341
10	0,98742	0,93427
11	0,99266	0,80391
12	0,99565	0,42736

A última coluna do triângulo é dada pela seguinte expressão (8):

$$X_{i,j} = cX_{i,j} + (1 - c)M_i$$
 (8)

Os valores de $X_{i,j}$ representam a última coluna estimada pelo método Chain Ladder e M_i são as estimativas finais dadas pelo método de Bornhuetter-Ferguson. O valor da PEONA é dado através da soma os valores da última coluna estimada pelo método de Benktander-Hovinen diminuídos da soma da diagonal do triângulo incremental conforme a tabela 8. O resultado encontrado é de R\$ 36.243.101.

Tabela 8: Dados Benktander-Hovinen (Fonte: Autores – 2013)

Ocorrência	Última Coluna Chain Ladder	M_{i}	Ultima Coluna Estimada de Benktander-Hovinen	Diagonal
fev/10	13.934.541	15.338.077	13.934.567	13.873.891
mar/10	13.621.498	21.838.992	13.621.941	13.521.508
abr/10	16.101.552	29.711.984	16.103.704	15.899.048
mai/10	17.231.540	31.651.372	17.237.734	16.874.414
jun/10	19.137.301	32.320.259	19.153.744	18.461.436
jul/10	23.921.517	26.373.480	23.928.729	22.624.181
ago/10	24.075.579	24.106.305	24.075.774	22.155.960
set/10	23.873.332	22.712.926	23.854.080	20.798.389
out/10	20.558.109	19.316.440	20.476.490	15.287.295
nov/10	19.269.742	19.819.845	19.377.613	10.736.654
dez/10	15.548.532	20.692.218	18.494.007	3.782.505

4.6 Método de Bootstrap

Os métodos estocásticos produzem uma distribuição de probabilidade em torno da melhor estimativa da provisão que está sendo calculada. O método de Bootstrap (ENGLAND & VERRALL, 1999; SOUZA, 2011) simula a distribuição da provisão projetando triângulos alternativos baseados no triângulo de desenvolvimento original. Em Pinheiro (1999) e Souza (2011) o método Bootstrap é utilizado com sucesso no cállculo de estimativas para previsão de provisões técnicas.

A partir de fatores de desenvolvimento, calculados conforme o método Chain Ladder, a última diagonal é mantida e os valores anteriores são reestimados.

Os resíduos de Pearson dos triângulos incrementais são obtidos e ajustados pelas fórmulas (9) e (10):

$$Resíduos_{i,j} = \frac{Valor \ Original_{i,j} - Valor \ Reestimado_{i,j}}{\sqrt{Valor \ Reestimado_{i,j}}} \tag{9}$$

Fator de ajuste =
$$\sqrt{\frac{n}{n-p}}$$
 (10)

Onde: n é o número de observações e p é o numero de parâmetros a serem estimados.

Estes resíduos são "reamostrados" com reposição de forma a gerar vários triângulos de resíduos. A partir deles, os triângulos incrementais são reeditados e a provisão estimada, segundo fórmula (11):

$$Valor\ Reeditado_{i,j} = Resíduo\ Aleatório_{i,j} \times \sqrt{Valor\ Reestimado_{i,j}} + \ Valor\ Reestimado_{i,j} \ \ (11)$$

Esse processo precisa ser repetido N vezes, produzindo N indicações da PEONA. Foram realizadas 50.000 simulações e na figura 1 encontra-se o histograma com os dados da simulação se comportando como uma distribuição Normal.

A vantagem do método é que, além da média, é conhecida a variabilidade da reserva de sinistros em função da seleção aleatória dos resíduos utilizados no cálculos dos triângulos reeditados. Dos valores apresentados acima e pelo comportamento dos dados analisados no histograma, é chegado ao valor de R\$ 33.006.665 da PEONA pelo método de Bootstrap.

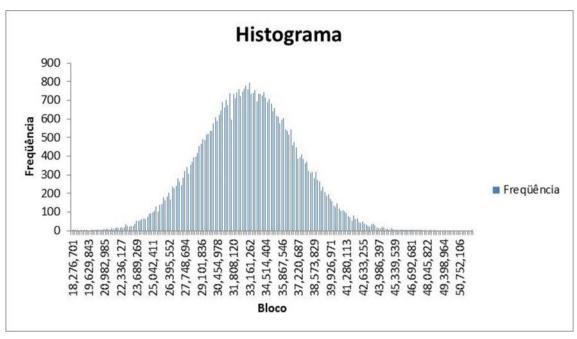


Figura 1: Histograma Bootstrap (Fonte: Autores – 2013)

4.7. Método da Log-Normal

O método da Log-Normal (BORGINHO, 2003) é baseado em Modelos Lineares Generalizados – MLG (MCCULLAGH & NELDER, 1989). Foi proposto (em seu modelo básico) por Christofides (1990) e muito bem utilizado por Carvalho (2010) para estimativas de previsões de sinistros. É considerado que cada uma das entradas do triângulo representa uma observação de uma variável aleatória e a ideia é modelar esse valor tendo como variáveis explicativas o mês de aviso e o período de desenvolvimento.

Os montantes incrementais $X_{i,j}$ assumem ser variáveis independentes e identicamente distribuídas que seguem uma distribuição Log-Normal com parâmetros $N_{i,j}$ e σ^2 . O valor de $N_{i,j}$ é estimado através de uma combinação linear de parâmetros, onde são levados em consideração os efeitos dos meses de ocorrência (α_i) e dos períodos de desenvolvimento (β_i).

O próximo passo é estimar os parâmetros α_i e β_j do modelo de modo a minimizar os erros (resíduos). Essa estimativa é feita por máxima verossimilhança, com recurso de alguns algoritmos de aproximação, dada a complexidade da resolução analítica. Na tabela 9 é possível ver o resultado da estimação feita pelo Solver do Excel.

-Normai (Fonte: Autores – 2013)							
I	$\alpha_{\rm i}$	β_{i}					
1	0	0					
2	-0,08838	0,26293					
3	-0,47410	-0,34629					
4	0,07749	-0,82838					
5	0,02936	-1,66979					
6	0,10978	-2,27980					
7	0,35743	-2,60761					
8	0,49689	-2,86006					
9	0,46661	-3,64203					
10	0,29143	-4,58292					
11	0,14491	-4,54152					
12	-0,03084	-4,15497					

Tabela 9: Parâmetros Log-Normal (Fonte: Autores – 2013)

A suposição principal desse modelo é que $X_{i,j}$ pode ser escrito da forma (12):

$$X_{i,j} = R_i \cdot C_j \cdot E_{i,j} \tag{12}$$

Onde R_i representa o efeito do mês de ocorrência, C_j representa o efeito do mês de aviso e $E_{i,j}$ são variáveis aleatórias independentes de distribuição Log-Normal com parâmetro $(0,\sigma^2)$, ou seja, $E_{i,j} \sim \text{Log-Normal } (0,\sigma^2)$.

Definindo $Z_{i,j} = ln(X_{i,j})$, é possível escrever (13):

$$Z_{i,j} = \alpha_i + \beta_i + \varepsilon_{i,j} \tag{13}$$

Onde $\alpha_i = \ln(R_i)$, $\beta j = \ln(C_j)$ e $\epsilon i, j = \ln(E_{i,j})$. Dessa forma $\epsilon_{i,j} \sim N(0,\sigma^2)$, e consequentemente (14) e (15), serão:

$$E[Z_{i,j}] = \mu_{ij} = \alpha_i + \beta_j \tag{14}$$

$$Var[Z_i] = \sigma^2 \tag{15}$$

 $Logo, \ pode-se \ a firmar \ que \ X_{i,j} \sim Log-Normal \ (\mu_{ij}, \sigma^2) \ e \ que \ Z_{i,j} \sim N(\mu_{ij}, \sigma^2).$

Assim como feito no método estocástico de Bootstrap, é preciso repetir esse processo N vezes produzindo assim N indicações da PEONA. Para este trabalho foram feitas 50.000 simulações. No gráfico abaixo é possível observar o histograma gerado pelos dados da simulação. É possível reparar que os dados se comportam como uma distribuição Normal ao redor da média.

Dos valores apresentados e pelo comportamento dos dados analisados no histograma, é chegado ao valor de R\$ 33.422.544 da PEONA pelo método de Log-Normal.

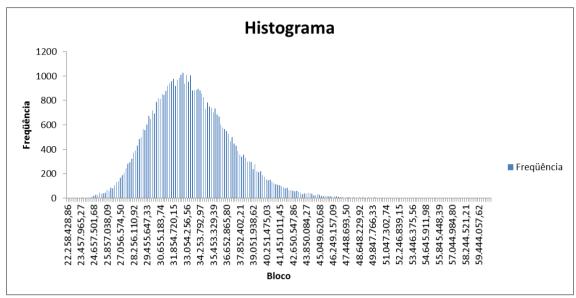


Figura 2: Histograma Log Normal (Fonte: Autores – 2013)

5. Comparativo dos Métodos

Uma das formas de verificar se a provisão foi bem consituida é comparando os valores estimados com os montantes reais observados para um determinado periodo de tempo. Dessa forma, é possivel identificar que metodologia atuarial reproduziu estimativas mais fieis ao comportamento real dos avisos da operadora.

Na tabela 10 é mostrado o triângulo completo real. Somando os valores destacados chegamos a um montante final de R\$ 34.380.427, que representa o custo observado para a operadora nos 12 meses seguintes.

O Quadro 2 mostra todas as estimativas encontradas e a diferença, em percentual, do observado confrontado com os valores calculados.

Técnica	Valor Estimado	Diferença em %
Metodologia ANS	17.907.484	-47,91%
Chain Ladder	33.257.961	-3,26%
Bornhuetter-Ferguson	38.063.588	10,71%
Benktander-Hovinen	36.243.101	5,42%
Bootstrapp	33.006.665	-4,02%
Log-Normal	33.422.544	-3,81%

A estimativa dada pela metodologia da ANS gerou um valor muito distante do observado, pois é baseada em *benchmarks* de mercado, ou seja, reflete um comportamento médio das outras operadoras. Esta metodologia dever ser usada por operadoras em início de funcionamento ou até que a sua metodologia própria seja aprovada, o que não é o caso da operadora analisada.

A metodologia de Chain Ladder tem como diferencial a fácil implementação, por isso é a mais utilizada pelo mercado. Apesar dos valores estimados e observados estarem bem próximos ele precisa ser constantemente revisado e comparado aos montantes reais observados, pois ao longo do tempo a velocidade dos avisos pode se alterar.

Tabela 10: Triângulo final observado (Fonte: Autores – 2013)

	0	1	2	3	4	5	6	7	8	9	10	11
jan/10	4.379.979	5.391.777	2.065.994	698.975	408.374	571.951	394.109	225.405	60.682	169.377	54.887	63.043
fev/10	3.674.365	5.208.349	2.119.773	1.117.402	517.857	396.881	370.067	119.208	274.077	45.878	30.034	22.916
mar/10	4.120.183	5.331.236	1.762.769	687.145	771.451	424.009	146.888	213.040	59.917	4.870	61.202	37.700
abr/10	3.673.375	5.851.430	1.934.239	2.074.260	985.555	634.602	388.428	278.062	79.097	179.340	72.393	38.124
mai/10	4.348.593	5.059.641	3.246.156	2.762.365	637.000	273.159	283.399	264.101	65.926	136.310	57.309	43.212
jun/10	4.177.032	6.972.554	3.563.668	2.141.055	973.266	428.951	204.910	200.000	181.043	164.623	99.438	40.058
jul/10	4.381.998	7.203.482	5.420.388	4.030.127	1.297.707	290.478	231.444	125.868	183.526	132.847	55.750	0
ago/10	5.621.242	5.429.938	5.850.270	3.852.938	1.401.573	524.643	254.830	171.807	129.741	134.779	60.514	1.223
set/10	6.779.767	6.091.281	4.064.043	3.863.297	1.033.114	526.657	288.670	193.806	114.021	162.588	45.333	37.276
out/10	5.125.747	5.336.403	4.825.145	2.876.238	1.254.507	575.705	271.059	121.009	116.642	139.960	62.956	36.006
nov/10	3.882.433	6.854.221	3.213.219	3.403.775	1.146.226	309.840	177.665	129.653	158.667	133.247	59.826	10.165
dez/10	3.782.505	6.082.873	2.613.206	3.298.655	1.290.252	482.655	223.032	138.296	67.447	71.125	71.636	36.853

Um dos fatores possíveis para explicar a diferença de mais de 10% entre o valor observado e o valor estimado pela metodologia de Bornhuetter-Ferguson pode estar no valor usado em M_i . Para esse método são consideradas duas estimativas, e elas precisam ser constantemente revistas e atualizadas, para melhor refletir o que realmente acontece com a operadora.

Como é calculado através da combinação dos métodos de Chain Ladder e de Bornhuetter-Ferguson era de se esperar que o valor estimado pelo método de Benktander-Hovinen ficasse entre os valores destas duas metodologias (como foi o caso).

Os fatores de desenvolvimento podem ser ajustados para uma melhor adequação entre os resultados. É possível introduzir fatores de cauda com base em benchmarks, não nos limitando apenas ao conhecimento do triângulo.

Os métodos Bootstrap e Log-Normal, que atingiram valores próximos, possuem como desvantagem não funcionar bem se aplicados em dados que apresentem fatores de

desenvolvimento menores que 1 e outra limitação é não poderem ser aplicados em triângulos com diagonais incompletas.

6. Conclusão

É sempre prudente verificar a ordem financeira das operadoras, pois o custo com a saúde vem aumentado com o passar dos anos impulsionado pelo envelhecimento da população e a incorporação de novas tecnologias ao rol de procedimentos da ANS. Fica evidente a preocupação da agência com a solvência das operadoras. De acordo com a RN 316 (ANS, 2013), sempre que detectada anormalidades econômico-financeiras ou administrativas graves que coloquem em risco a continuidade ou a qualidade do atendimento à saúde, a ANS poderá determinar a alienação da carteira, o regime de direção fiscal ou técnica ou ainda a liquidação extrajudicial, conforme a gravidade do caso.

A PEONA se subdimensionamento influencia diretamente na solvência da operadora, pois essa provisão trata do montante a ser reservado para arcar com os compromissos futuros da operadora. Ao longo de treze anos de regulação, conforme mostrado no quadro 3, 7,45% das operadoras encerraram suas atividades por motivo de insolvência.

Porém os outros motivos, falência e liquidação extrajudicial, estão fortemente ligados a esse conceito, como vemos no quadro 3.

Quadro 3: Situação das operadoras (Fonte: Autores – 2013)

Motivo	Quantidade de Operadoras	% em Relação ao Total
Falência	81	50,31%
Liquidação Extrajudicial	68	42,24%
Insolvência	12	7,45%
Total	161	100,00%

Segundo Atherino (2008) não existe um método para o cálculo das provisões que produza constantemente a melhor estimativa. O atuário deve decidir a metodologia que fornece o balanço apropriado entre estabilidade e a resposta rápida às mudanças recentes, pois alguns métodos são mais estáveis e outros respondem melhor às tendências aparentes.

No caso em estudo, o método de Chain Ladder apresentou melhores resultados (-3,26%) em comparação aos demais, embora com variação negativa, o que a médio e longo prazo poderia levar a insolvência, caso nehuma correção fosse tomada. O método de Benktander-Hovinen também apresentou pequena variação, só que positiva (5,42%), o que poderia a médio e longo prazo causar o superdimensionamento da PEONA, afetando a distribuição de lucros da

empresa e gerando custo de capital. Já a metodologia da ANS apresentou o pior resultado, mas como já mencionando, essa metodologia somente dever ser usada por operadoras em início de funcionamento, quando não existe modelo definido pela própria operadora, o que não se aplica especificamente a operadora analisada.

Conforme é possível observar, o atuário tem uma responsabilidade muito grande no dimensionamento das provisões técnicas, pois um cálculo inadequado pode comprometer os resultados de uma empresa ou até conduzir à sua insolvência. Segundo Mano & Ferreira (2009), além da responsabilidade legal assumida, ele carrega uma responsabilidade social, tendo em vista os diversos setores da sociedade que podem ser afetados pelo seu trabalho.

O problema das provisões de sinistros ocorridos mas não avisados é, dessa forma, mais atuarial do que estatístico, ou seja o uso de metodologias de provisão, por mais sofisticadas que sejam, não eliminam o trabalho de análise e a tomada de decisão por parte do atuário (BORNHUETTER & FERGUSON, 1972).

Referencias

Alves, A. M. C. (2011). Provisões para Sinistros: Estudo do Mercado Segurador Português. Dissertação de Mestrado, ISEGI, Universidade Nova de Lisboa.

Atherino, R. S. (2008). Estimação de Reservas IBNR por Modelos em Espaço de Estado: Empilhamento por Linhas do Triângulo Runoff. Tese de Doutorado, PUC-Rio, 57p.

ANS - Agência Nacional de Saúde. Caderno de Informação da Saúde Suplementar. Disponível em: http://www.ans.gov.br/images/stories/Materiais_para_pesquisa/Perfil_setor/Caderno_informacao_saude_suplementar/20130115_caderno_DEZEMB_revisado.pdf>. Acesso em: Fevereiro, 2013.

ANS - Agência Nacional de Saúde. Resolução Normativa nº 209, de 22/12/2009. Disponível em: http://www.ans.gov.br/index2.php?option=com_legislacao&view=legislacao&task=TextoLei&format=raw&id=1571 Acesso em: Março, 2013.

ANS - Agência Nacional de Saúde. Resolução Normativa nº 316, de 30/11/2012. Disponível em: http://www.ans.gov.br/index2.php?option=com_legislacao&view=legislacao&task=TextoLei&format=raw&id=2314 Acesso em: Março, 2013.

Benktander, G. (1976). An Approach to Credibility in Calculating IBNR for Casualty Excess Reinsurance, The Actuarial Review, p.7.

Bornhuetter, R. L.; Ferguson, R. R. (1972). The Actuary and IBNR. Proceedings of The Casualty Actuarial Society, n. 59, p. 181-19.

Borginho, H. (2003). Provisões para Sinistros Não Vida – Metodologias de Estimação, Departamento de Análise de Riscos e Solvência do ISP – Inst. Seguros de Portugal. Disponível em: http://www.isp.pt/ > Acesso: Fevereiro, 2013.

Carvalho, A. I. V. (2010). Modelos Estocásticos em Provisões para Sinistros. Portugal: Universidade Técnica de Lisboa. Relatório de Estágio do Mestrado em Ciências Atuariais, Instituto Superior de Economia e Gestão.

Chadick, C.; Campbell, W.; Knox-Seith, F. (2009). Comparison of Incurred But Not Reported (IBNR) Methods, Society of Actuaries Health Section, Lewis & Ellis, Inc.

Christofides, S. (1990). Regression Models Based on Logincremental Payments. Claims Reserving Manual, 2, Institute of Actuaries, London.

Corazza, M.; Pizzi, C. (2011). Mathematical and Statistical Methods for Actuarial Sciences and Finance. Springer - Business & Economics, 329 p.

De Jong, P. (2006). Forecasting Runoff Triangles. North American Actuarial Journal, 10, 2.

England, P. D.; Verrall, R. J. (1999). Analytic and Bootsrap Estimates of Prediction Erros in Claim Reserving. Insurance: Mathematics and Economics, v.25, p. 281-293.

England, P. D.; Verrall, R. J. (2002). Stochastic Claims Reserving in General Insurance. British Actuarial Journal, 8,443-518

Gigante, P.; Picech, L.; Sigalotti L. (2013). Prediction Error for Credible Claims Reserves: an h-likelihood approach. European Actuarial Journal, 1-18.

Goovaerts, M.; Kaas, R.; Van Herrwaarden, A.; Bauwelinckk, T. (1990). Effective Actuarial Methods, Amsterdam, North-Holland.

Lima, C. P.; Carvalho, M. F. (2010). Provisões na Saúde Suplementar. Rio de Janeiro: UERJ, 2010.Monografia, Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro.

Mano, C. C. A.; Ferreira, P. P. (2009). Aspectos Atuariais e Contábeis das Provisões Técnicas. Funenseg, 1a edição, 432 p.

McCullagh, P.; Nelder, J.A. (1989). Generalized Linear Models. Chapman & Hall/CRC.

Melo, L. G. (2007). Método Bayesiana para Provisão de Eventos Ocorridos mas Não Avisados. Curitiba: UFPR. Monografia, Departamento de Estatística, Universidade Federal do Paraná.

Melo, E. F. L.; Neves, C. R. (2012). Solvência no Mercado de Seguros e Previdência – Coletânia de Estudos. Funenseg. 1ª edição.

Pereira, M. H. R. (2013). Estimativa de provisões de IBNR utilizando Espaço de Estados e Filtro de Kalman: Um caso brasileiro, Dissertação de Mestrado, Programa de Mestrado Profissional em Economia da Fundação Getulio Vargas/EESP.

Pinheiro, P. (1999), Análise Actuarial de Provisões para Sinistros – Uma Aplicação do Método Bootstrap, Dissertação de Mestrado, Instituto Superior de Economia e Gestão da Universidade Técnica de Lisboa.

Schmidt, K. D. (2006). Methods and Models of Loss Reserving based on Run-off Triangles: A unifying survey. Casualty Actuarial Society Forum Fall 2006, pp. 269-317.

Simões, A. (2008). Projecto Solvência II — Desenvolvimento de um Modelo Interno Parcial numa Companhia de Seguros Não Vida, Dissertação de Mestrado, Instituto Superior de Economia e Gestão da Universidade Técnica de Lisboa.

Souza, N. F. (2011). Método de Bootstrap e Teoria da Credibilidade na Estimativa das Provisões para Sinistros. Dissertação de Mestrado em Matemática e Aplicações, no ramo Actuariado, Estatística e Investigação Operacional, Universidade Nova de Lisboa, Portugal.

Taylor, G. (2000). Loss Reserving: An Actuarial Perspective, Kluwer, Boston.

Verrall, R. (1989). State Space Representation of the Chain Ladder Linear Model. The Journal of the Institute of Actuaries, 116, 589-610.

Wüthrich, M. V.; Merz, M (2008). Stochastic Claims Reserving Methods in Insurance. Wiley- Business & Economics - 438 p.